
Protection

 Discuss the goals and principles of protection in a modern computer system
 Explain how protection domains combined with an access matrix are used to

specify the resources a process may access
 Examine capability and language-based protection systems

Goals of Protection
Operating system consists of a collection of objects, hardware or software. Each object
has a unique name and can be accessed through a well-defined set of operations.
Protection problem - ensure that each object is accessed correctly and only by those
processes that are allowed to do so.

 Obviously to prevent malicious misuse of the system by users or programs.
 To ensure that each shared resource is used only in accordance with

system policies, which may be set either by system designers or by system
administrators.

 To ensure that errant programs cause the minimal amount of damage possible.
 Note that protection systems only provide the mechanisms for enforcing policies

and ensuring reliable systems. It is up to administrators and users to implement
those mechanisms effectively.

Principles of Protection
Programs, users and systems should be given just enough privileges to perform their
tasks

 The principle of least privilege dictates that programs, users, and systems be
given just enough privileges to perform their tasks.

 This ensures that failures do the least amount of harm and allow the least of
harm to be done.

 For example, if a program needs special privileges to perform a task, it is better
to make it a SGID program with group ownership of "network" or "backup" or
some other pseudo group, rather than SUID with root ownership. This limits the
amount of damage that can occur if something goes wrong.

 Typically each user is given their own account, and has only enough privilege to
modify their own files.

 The root account should not be used for normal day to day activities - The
System Administrator should also have an ordinary account, and reserve use of
the root account for only those tasks which need the root privileges

Domain Structure
 A computer can be viewed as a collection of processes and objects (both HW &

SW).
 The need to know principle states that a process should only have access to

those objects it needs to accomplish its task, and furthermore only in the modes
for which it needs access and only during the time frame when it needs access.

 The modes available for a particular object may depend upon its type.

Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be performed on the object.
Domain = set of access-rights

System consists of 2 domains:
User
Supervisor UNIX
Domain = user-id
Domain switch accomplished via file system
Each file has associated with it a domain bit (setuid bit)
When file is executed and setuid = on, then user-id is set to owner of the file being
executed. When execution completes user-id is reset

Domain Implementation (MULTICS)
Let Di and Dj be any two domain rings
If j < I Þ Di Í Dj

 Rings are numbered from 0 to 7, with outer rings having a subset of the privileges
of the inner rings.

 Each file is a memory segment, and each segment description includes an entry
that indicates the ring number associated with that segment, as well as read, write,
and execute privileges.

 Each process runs in a ring, according to the current-ring-number, a counter
associated with each process.

 A process operating in one ring can only access segments associated with higher
(farther out) rings, and then only according to the access bits. Processes cannot
access segments associated with lower rings.

 Domain switching is achieved by a process in one ring calling upon a process
operating in a lower ring, which is controlled by several factors stored with each
segment descriptor:

o An access bracket, defined by integers b1 <= b2.
o A limit b3 > b2
o A list of gates, identifying the entry points at which the segments may be

called.
 If a process operating in ring i calls a segment whose bracket is such that b1 <= i

<= b2, then the call succeeds and the process remains in ring i.
 Otherwise a trap to the OS occurs, and is handled as follows:

o If i < b1, then the call is allowed, because we are transferring to a
procedure with fewer privileges. However if any of the parameters being
passed are of segments below b1, then they must be copied to an area
accessible by the called procedure.

o If i > b2, then the call is allowed only if i <= b3 and the call is directed to
one of the entries on the list of gates.

 Overall this approach is more complex and less efficient than other protection
schemes.

Access Matrix
The model of protection that we have been discussing can be viewed as an access
matrix, in which columns represent different system resources and rows represent
different protection domains. Entries within the matrix indicate what access that
domain has to that resource.
View protection as a matrix (access matrix)
Rows represent domains
Columns represent objects
Access (i, j) is the set of operations that a process executing in Domaini can invoke on
Objectj

Use of Access Matrix
If a process in Domain Di tries to do “op” on object Oj, then “op” must be in the access
matrix Can be expanded to dynamic protection Operations to add, delete access rights
Special access rights:
Owner of Oi copy op from Oi to Oj
Control – Di can modify Dj access rights
Transfer – switch from domain Di to Dj
ACCESS MATRIX DESIGN SEPARATES MECHANISM FROM POLICY
Mechanism

 Operating system provides access-matrix + rules
 If ensures that the matrix is only manipulated by authorized agents and that

rules are strictly enforced
Policy

 User dictates policy
 Who can access what object and in what mode

Implementation of Access Matrix
Each column = Access-control list for one object
Defines who can perform what operation.

 Domain 1 = Read, Write
 Domain 2 = Read
 Domain 3 = Read

 M Each Row = Capability List (like a key)
Fore each domain, what operations allowed on what objects.
Object 1 – Read
Object 4 – Read, Write, Execute
Object 5 – Read, Write, Delete, Copy
Access Matrix of Figure A With Domains as Objects

Access Matrix with Copy Rights

Access Matrix With Owner Rights

Modified Access Matrix of Figure B

Access Control
Protection can be applied to non-file resources
Solaris 10 provides role-based access control (RBAC) to implement least privilege
Privilege is right to execute system call or use an option within a system call
Can be assigned to processes
Users assigned roles granting access to privileges and programs
Role-based Access Control in Solaris 10

Revocation of Access Rights
Access List – Delete access rights from access list
Simple
Immediate Capability List – Scheme required to locate capability in the system before
capability can be revoked

Reacquisition
Back-pointers
Indirection
Keys
Capability-Based Systems
Hydra
Fixed set of access rights known to and interpreted by the system
Interpretation of user-defined rights performed solely by user's program; system
provides access protection for use of these rights Ambridge CAP System
Data capability - provides standard read, write, execute of individual storage segments
associated with object
Software capability -interpretation left to the subsystem, through its protected
procedures

Language-Based Protection
Specification of protection in a programming language allows the high-level description
of policies for the allocation and use of resources Language implementation can provide
software for protection enforcement when automatic hardware-supported checking is
unavailable Interpret protection specifications to generate calls on whatever protection
system is provided by the hardware and the operating system

Protection in Java 2

 Java was designed from the very beginning to operate in a distributed
environment, where code would be executed from a variety of trusted and
untrusted sources. As a result the Java Virtual Machine, JVM incorporates many
protection mechanisms

 When a Java program runs, it load up classes dynamically, in response to
requests to instantiates objects of particular types. These classes may come from
a variety of different sources, some trusted and some not, which requires that
the protection mechanism be implemented at the resolution of individual
classes, something not supported by the basic operating system.

 As each class is loaded, it is placed into a separate protection domain. The
capabilities of each domain depend upon whether the source URL is trusted or
not, the presence or absence of any digital signatures on the class (Chapter 15),
and a configurable policy file indicating which servers a particular user trusts,
etc.

 When a request is made to access a restricted resource in Java, (e.g. open a local
file), some process on the current call stack must specifically assert a privilege
to perform the operation. In essence this method assumes responsibility for the
restricted access. Naturally the method must be part of a class which resides in a
protection domain that includes the capability for the requested operation. This
approach is termed stack inspection, and works like this:

o When a caller may not be trusted, a method executes an access request
within a doPrivileged() block, which is noted on the calling stack.

o When access to a protected resource is requested, checkPermissions()
inspects the call stack to see if a method has asserted the privilege to
access the protected resource.

 If a suitable doPriveleged block is encountered on the stack
before a domain in which the privilege is disallowed, then the
request is granted.

 If a domain in which the request is disallowed is encountered first,
then the access is denied and a AccessControlException is thrown.

 If neither is encountered, then the response is implementation
dependent.

 In the example below the untrusted applet's call to get() succeeds, because the
trusted URL loader asserts the privilege of opening the specific URL lucent.com.
However when the applet tries to make a direct call to open() it fails, because it
does not have privilege to access any sockets.

Stack Inspection

